The importance of asset tracking

In today’s connected world, asset trackers have become an essential tool for businesses to enable effective monitoring and management of their assets across the globe. Whether you’re running a logistics company, managing a fleet of vehicles, or overseeing a construction project, having real-time visibility and control over your assets is essential.

Terrestrial asset tracking via BLE, WiFi, LPWAN and cellular has numerous benefits but is not without its drawbacks and limitations. In scenarios where assets operate in remote areas or face signal interruptions, as is often the case in mining, forestry and sea freight, for example, satellite asset tracking becomes essential to ensure uninterrupted monitoring and prevent downtime.

In contrast to terrestrial services, satellite asset tracking provides reliable coverage and continuous visibility from anywhere on the planet with a clear view of the sky; there’s no dependency on proximity to mobile phone masts. This makes it indispensable for applications where reliable asset monitoring is paramount, such as in the case of construction equipment or specialized machinery, where even slight discrepancies in location can have significant consequences. However, with a wide range of solutions available in the market, selecting the optimum satellite device for business and operational needs can be a challenge. Considerations such as coverage, data speed, battery life, accuracy, and cost will ultimately guide buyers’ decisions.

Whether you need real-time tracking or periodic updates, selecting the right device will ensure effective asset management and operational optimization. Using our guide about how to choose the right satellite enabled device will ensure you make the right asset tracker choice. Be sure to consider the key five criteria outlined here.

Choosing the right satellite device for asset tracking

1. Assess your needs

Before determining the asset tracking device required, it’s crucial to understand what needs to be achieved by the tracking solution. Considering the types of assets that need to be tracked – such as vessels at sea, a remote workforce, or aircraft – the geographical areas the assets will be located in, and the level of tracking accuracy required are just three considerations to make.

Another crucial factor to consider is the level of tracking accuracy required. Some applications demand real-time and precise location updates, such as high-value shipments or sensitive equipment. In such cases, a device that offers high accuracy and frequent data transmission will be essential. On the other hand, if periodic location updates are sufficient, a device with longer battery life and less frequent data transmission would be more suitable.

SEE TRACKING SOLUTIONS
illustration-satellite-asset-tracking
Satellite Orbit Heights Diagram 2024

2. Evaluate coverage options

Armed with a clear view of your essential requirements, your next consideration when choosing a satellite asset tracking device is coverage. A satellite network operator’s coverage depends on the number of satellites they have in orbit, and the height of those satellites relative to the Earth.

It’s certainly not the case that all satellite operators offer 100% global coverage, and you should check carefully to ensure that the tracking device you’re looking at has good, stable coverage in every region your asset operates in.

Iridium offers complete global coverage; Inmarsat covers most of the globe, but service degrades towards the polar regions. Globalstar works well in the Americas, Western Europe and much of the Asia-Pacific region.

Use our coverage maps to view the different satellite networks and select a network that ensures seamless connectivity for your assets, regardless of their location.

Coverage Maps

3. Battery life and power management

Many tracking devices use your vehicle’s electrical system as their principle power source, connected via 9-30v input or USB; cars, trucks, boats, aircraft etc. If this applies to you, you’ll have a wide choice of devices and don’t need to be particularly concerned with the power draw, even if you’re transmitting a location signal very regularly.

However, for assets that have limited access to power sources, extended battery life is essential. Satellite asset trackers consume power to transmit location data, and their battery life can vary significantly depending on the device and usage frequency. If real-time tracking and monitoring are required, buyers should opt for devices with longer battery lives, solar power options or power-saving features. Alternatively, if reporting only on exception or low-frequency updates is sufficient, there are tracking devices available with extended battery life lasting weeks or even months.

SEE IRIDIUM EDGE SOLAR
illustration-of-battery-life-span-examples
Cloudloop-Tracking-on-monitor

4. Data accuracy, speed and management

It goes without saying that frequent and fast data transmission enables more precise asset tracking. Knowing the location and status of your assets in close to real time helps you make informed decisions, optimize logistics, and provide reliable information to customers or stakeholders. That said, data points always require context to be meaningful.

So, a robust satellite asset tracking solution should not only provide accurate, real-time location information but also deliver data management capabilities. Cloudloop is Ground Control’s cloud-based platform for subscription and device management, and, new for 2023, device tracking. There are a number of key tracking features of the platform, including:

  • Real-time visibility of your assets, with multiple mapping options
  • View the location, speed and heading of your assets, wherever they are on the planet
  • Instant notifications of driver-issued alerts
  • Historical position reporting and device events.
Cloudloop Tracking Overview

5. Cost and scalability

As well as the upfront costs, when selecting a tracker, it’s important to consider ongoing airtime and/or service charges. There are various pricing models available, from pay-as-you-go where you top up your device’s airtime as needed; monthly fixed payments based on your estimated usage; or post-pay invoicing based on actual usage (note: while this sounds appealing, they’re often more expensive than having a monthly fixed payment).

You can also pay per asset, or in some cases, use ‘pooled’ data so that all assets are drawing from the same data allowance (this gives you flexibility if assets’ tracking requirements change week on week, or month on month, while still having a fixed monthly payment).

Ground Control offers very flexible pricing models, and is competitive on airtime too. Our most popular tracking airtime services include Iridium Short Burst Data (SBD) and Inmarsat BGAN M2M.

LOW COST AIRTIME PLANS
Satellite-Asset-Tracking-5

Comparing popular satellite-enabled asset trackers

RockFLEET

VIEW PRODUCT

RockAIR

VIEW PRODUCT

Cobham Explorer 323

VIEW PRODUCT

Iridium Edge Solar

VIEW PRODUCT
Service provider:
Iridium
Iridium
Inmarsat
Iridium
Size:
∅ 137 x 40 mm
119 x 100 x 25 mm
∅ 32.1 x 9.7 cm
164.2 x 71.2 x 32.9 mm
Weight:
390 grams
210 grams
3.9 kg
470 grams
Power:
9-30v DC | Internal battery
9-30v DC | Internal battery | USB rechargeable
12-24v DC
Photovoltaic Solar Cells | Rechargeable and Primary Batteries
Antennae:
Built-in GNSS & Iridium (& GSM option)
Built-in GNSS & Iridium (& GSM option)
Built-in GNSS & Inmarsat
Built-in GNSS & Iridium
Dual Mode?
Yes: Iridium Short Burst Data / GSM
Yes: Iridium Short Burst Data / GSM
No: Inmarsat BGAN and BGAN M2M only
No: Iridium Short Burst Data only

Key Features:

Battery life: 15 min TX for 10 days
Autonomous tracking
Two-way messaging
iOS and Android app
M2M via RS-232 | RS-485 | BLE API
Switch inputs / alerts
Over the air config

Battery life: 15 min TX for 10 days
Autonomous tracking
Two-way messaging
iOS and Android app
M2M via RS-232 | BLE API
Switch inputs / alerts
On-dash keypad
Over the air config

Standard IP data: 384 Kbps up, 270 Kbps down
Autonomous tracking
Internet connectivity, voice and email communication
iOS and Android app
LAN interface: 1 x 10/100 Mbps ethernet via hybrid power and connectivity cable

Battery: Self-charging solar
Autonomous tracking
Two-way communications
iOS app
BLE
Wireless sensor integration
MIL-STD-810G and IP68 Ratings
Over the air config

Service provider:
Iridium
VIEW PRODUCT
Iridium
VIEW PRODUCT
Inmarsat
VIEW PRODUCT
Iridium
VIEW PRODUCT

Satellite asset trackers have become an increasingly affordable, accessible and effective solution for businesses to enable fast, reliable and effective monitoring and management of their assets across the globe.

By assessing one’s tracking solution needs, and then evaluating coverage options, considering battery life, accuracy and reliability, and considering cost and scalability; an informed decision about the right satellite asset tracker can be made to achieve maximum operational efficiency.

Ready to select your asset tracking device?

Having partnered with satellite network providers such as Iridium and Inmarsat for well over a decade, we have access to competitively priced tariffs, and can also be very flexible in terms of bundled data - saving you money.

So if you are working on upgrading your existing solution, or tracking your assets for the first time and would like some no pressure, objective advice, simply fill in the form and one of our expert team will get back to you.

A surprisingly small amount of the Earth’s total surface is covered by terrestrial networks; it’s reckoned to be between 15-20%. Of course connectivity is centred around people, so populated land masses have the lion’s share of mobile phone masts. If your IoT application is located within or close to a populated area, you’ll have several choices to connect your devices: cellular, LPWAN, WiFi, BLE etc.

However if your application is in a remote area, or travels in and out of remote areas, terrestrial networks may be unavailable or unreliable. This often affects oil and gas pipelines; farms; mining operations; almost anything that’s at sea; offshore wind farms; reservoirs; solar plants; forestry – the list goes on.

Satellite IoT connectivity, once the last resort due to cost, has come of age. With a large number of new entrants to the market, incumbents have diversified their offerings, and prices have come right down. One example of this is the new Iridium Certus 100 service, designed for IoT. The RockREMOTE Rugged satellite IoT device leverages this service, which we’ve made available with both its IP-based connectivity option, and Iridium Messaging Transport (IMT), a message-based service allowing for relatively large (for IoT!) amounts of data to be transmitted using the MQTT protocol.

Our infographic draws out some of the key benefits of the new RockREMOTE Rugged; if you’d like to know more, just contact us and we’ll be happy to help.

Infographic showing reasons why the RockREMOTE Rugged can unlimit remote IoT applications

Find out more

If you have a remote connectivity challenge, we can help. We design and build our own hardware, like the RockREMOTE, but we also partner with companies like Thales, Cobham and Hughes, to ensure that we can offer our customers the best possible product for your particular requirement.

With over 20 years' experience, we'll provide you with impartial, expert advice. Call or email us, or complete the form; we're standing by to help.

Consulting firm McKinsey has projected that the Internet of Things (IoT) could enable global value between $5.5 trillion – $12.6 trillion by 2030. This estimation encompasses the value derived by consumers using IoT products and services. However, it is predicted that around 65% of this value will come from business-to-business (B2B) applications. And within the B2B sector, the primary drivers of value projected are operation optimisation (41%) and condition-based maintenance (12%).

2030 is still some time away, but how close are we to realising this value?

The IoT has already connected over 14 billion devices worldwide, but being a relatively new technology, it faces its share of challenges and obstacles. According to a recent survey on IoT deployments, only 42% of companies considered their projects successful. However, it’s important to consider that 50% of those surveyed were in the trial or pilot phase, which provides valuable insights into identifying barriers to success. Encouragingly, when compared to the 2020 survey results, the 2023 survey indicates a notable 28% increase in success rates. Additionally, research from ABI reveals that satellite IoT projects have a comparable but increased success rate, with approximately 50% of participants considering their projects successful.

As the adoption and success of IoT continues to accelerate, demonstrating a positive return on investment (ROI) becomes increasingly essential. Here at Ground Control, we are privileged to work on a wide range of IoT deployments every day. Our projects span various industries, from operators seeking to minimise downtime in the Oil and Gas sector, to those in Utilities handling mission-critical data, and even those facilitating telehealth via medical drone deliveries and remote nurse tracking. Drawing on these experiences, we’ve created this article to highlight the challenges we most commonly see and potential solutions to guide you on the path to success. But first…

How to define IoT project success

Defining IoT project success involves aligning project goals with overall objectives, setting specific and measurable KPIs, and quantifying expected benefits and ROI. Establishing baselines and targets, tracking progress, and analysing data against the defined metrics are crucial. In our experience, customers often focus on immediate challenges and short-term gains and this can lead to issues regarding scalability and the ability to adapt to future needs further down the line. When embarking on an IoT installation, regular iteration and improvement can mark the difference between success or not. In short, for many IoT projects success is dependent on companies being proactive.

GC-IoT-Blog-1

5 common IoT deployment challenges and potential solutions to overcome them

 
 

  1. Security and privacy concerns
  2. Connectivity reliability
  3. Interoperability and integration
  4. Data management and analytics
  5. Scalability
Data engineer near servers

1. Challenge: Security and privacy concerns

Within the vast IoT ecosystem, the extensive network of interconnected devices creates numerous potential entry points for cyberattacks. Each connected device becomes a potential vulnerability that malicious actors can exploit. The sheer volume of data generated and transmitted by IoT devices raises significant concerns about privacy. Safeguarding personal information and ensuring data protection become of paramount importance in this interconnected landscape.

From a technical perspective, security emerges as the foremost obstacle in IoT deployments. As IoT solutions continue to evolve, security measures must also advance. It is an ongoing and dynamic process that requires continuous improvement and this inherent characteristic poses significant challenges.

These concerns are further emphasised by notable cyberattacks that have made headlines. In 2021, a cyberattack on Colonial Pipeline forced a temporary shutdown of 5,500 miles of pipeline, impacting critical infrastructure. In another instance, an attempt was made to tamper with the levels of sodium hydroxide in Oldsmar, Florida’s water supply. Additionally, the ‘AcidRain‘ malware attack in 2022 caused severe and prolonged disruptions on a mass scale. This attack targeted and disabled Viasat’s KA-SAT broadband service’s satellite modems, affecting thousands of users in Ukraine and across Europe.

Potential solutions: Secure network design and data encryption

Addressing the security concerns in IoT deployments requires a multi-layered approach to IoT security. Implementing secure network architectures, employing data encryption, practicing best access control practices, and leveraging private network solutions, all strengthen organizations overall security posture in IoT deployments.

Secure Network Architecture: A robust and secure network architecture is crucial in addressing IoT security concerns. Companies should design their networks with measures such as network segmentation, firewalls, and intrusion detection systems. By dividing the network into segments and implementing firewalls and intrusion detection systems, the impact of potential breaches can be contained, and real-time threat identification and mitigation can be achieved.

Data Encryption: Protecting IoT data through encryption is paramount. Strong encryption algorithms and secure key management practices should be employed to ensure the confidentiality of sensitive information. By encrypting data at rest and in transit, organizations can significantly enhance the security of their IoT deployments.

Best Practice Access Control: Implementing best practices for access control and identity management is a simple yet effective way to strengthen IoT security. Regularly reviewing access privileges, promptly revoking access for former employees or compromised accounts, and monitoring for suspicious activities all contribute to an enhanced security posture, mitigating potential risks.
 
 

Private and Secure Networks: Depending on the nature of the data handled by an IoT application, a completely secure and private network may be necessary. Solutions like SCADASat provide secure, private networks for handling sensitive data, ensuring end-to-end security and protecting against unauthorized access.
 

 
 

2. Challenge: Connectivity reliability

The success of IoT relies heavily on reliable connectivity. Without a consistent means of transmitting data, the value of IoT is diminished. Obtaining a comprehensive view of operations is crucial for making informed business decisions. Fragmented data can lead to inaccurate insights, resulting in suboptimal business decisions.

Currently, only 25% of the world’s landmass is covered by cell towers. While 5G deployment is underway and will be able to support a much larger volume of devices, the shorter wavelengths mean 5G has a much shorter range than its predecessor. For some deployments, cellular coverage will be sufficient. But for those with assets in remote locations whereby cellular may be intermittent or unavailable, challenges arise; and a staggering 75% of businesses reported struggling with connectivity issues when trialling IoT projects.

Terrestrial connectivity transmission tower

Potential solutions: diversify connectivity portfolio, implement redundant network architectures and regular maintenance

Diversifying your connectivity portfolio involves adopting multiple connectivity technologies, including cellular, satellite, and LPWAN, to create a more resilient network infrastructure. By leveraging diverse connectivity options, organisations can minimise the impact of network outages, ensure continuous data transmission and balance costs. Just one example and one we’re increasingly seeing is satellite alongside LoRaWAN. Typically, sensors connected via LoRaWAN transmit data to a hub; the hub then optimises the data payload to reduce transmission costs, and from there transmits the data packet via cellular where and when available, and satellite when LTE is unavailable.

Implementing redundant network architectures is another effective strategy. This entails establishing backup systems and redundant connections to provide alternate pathways for data transmission. Redundancy mitigates the risk of single points of failure and enhances the reliability of the IoT network, ensuring uninterrupted connectivity even during network disruptions. One of our largest clients actually have satellite implemented as their third failover (cellular first, fibre second). Their satellite setup hasn’t failed once in 27 years and is the system they consider the most reliable.

What’s more, regular maintenance is vital for sustaining reliable connectivity. Conducting regular inspections, monitoring network performance, and performing necessary updates and maintenance tasks help identify and resolve potential issues proactively.
 
 

weather station rockblock

3. Challenge: Interoperability and integration

IoT projects encounter hurdles in achieving interoperability and integration across devices and systems. Inconsistent protocols, standards, and proprietary technologies create barriers to seamless data exchange and collaboration. These challenges result in data fragmentation, scalability limitations, and increased complexity in managing integrated IoT environments.

Potential solutions: APIs, middleware and gateway devices

Despite some really promising and exciting developments, it’s likely that widespread, tried and tested, and truly seamless interoperability – including device and connectivity – is a few years away. So many companies will still need to either utilize multiple SIM cards, and/or devices to make their network work for their IoT deployment. But open standards and protocols play a crucial role in addressing interoperability and integration challenges. By adopting open standards, organizations can ensure compatibility and seamless communication between different IoT devices and systems.

Additionally implementing robust APIs facilitates smooth integration and interoperation, enabling data exchange and interoperability across diverse components. Moreover, leveraging middleware solutions and gateway devices helps bridge the gap between incompatible technologies, enhancing interoperability and integration capabilities.
 
 

4. Challenge: Data management and analytics

Data management and analytics pose critical challenges in IoT projects. The sheer volume and diversity of data generated by connected devices make it daunting to collect, store, process, and derive meaningful insights. Organisations struggle to handle the velocity and real-time processing requirements of IoT data. Ensuring data quality, integrity, and security across heterogeneous data sources is another significant challenge. Furthermore, scalability issues arise as the number of devices and data sources increases.

Green line data graph

Potential Solutions: Data management platforms, analytics tools and machine learning algorithms

Organisations can address data management and analytics challenges in IoT projects by adopting comprehensive data management platforms. These platforms facilitate efficient data collection, integration, and storage from diverse sources, ensuring data quality and reliability. Advanced analytics tools empower organisations to process and analyse IoT data efficiently and effectively, extracting valuable insights for informed decision-making.

What’s more, machine learning algorithms and predictive analytics can be used to identify patterns and drive actionable intelligence. When used appropriately, these can ensure companies can drive true value from their data and thus IoT deployment.
 
 

Three workers at desk, with hardhat, large maps and calculator

5. Challenge: Scalability

When scaling an IoT project, various challenges become more pronounced. The costs associated with scaling can be significant, including expenses for hardware, connectivity, data storage, and maintenance. Managing and maintaining the project also becomes more complex and expensive as the number of devices and systems increases.

Battery life and power consumption pose significant challenges in scaled IoT projects. With more devices consuming more power, effectively managing power consumption and extending battery lives becomes crucial.

Scaling also intensifies challenges in data interoperability, security, and management. Ensuring interoperability and compatibility between devices and systems becomes more complex as numbers increase. Robust security measures must be implemented to protect against the growing risks of security breaches. Additionally, managing and processing the vast amounts of data generated by IoT devices becomes a significant challenge that requires suitable infrastructure and tools.

Potential Solutions: Prioritise scalable architecture, carefully consider device choices and leverage edge computing

Often scale is where in-house server infrastructure falls short for IoT applications. Cloud infrastructure for IoT applications encompasses not only traditional data processing and storage services but also gateway services that facilitate data collection and device interaction. These include HTTP/MQTT servers and WebSocket servers. Scalability is a crucial factor when designing cloud infrastructure for IoT. As your device count increases, your cloud infrastructure must seamlessly scale alongside it. IoT cloud platforms offer superior scalability compared to physical servers maintained in-house. Leading cloud service providers including AWS, Azure, GCP, or Macrometa can all provide robust and scalable solutions.

Implementing edge computing can also alleviate the burden on centralised cloud infrastructure and enhance scalability. By performing data processing and analysis at the edge of the network, closer to the IoT devices, you can reduce latency, minimise bandwidth requirements, and improve overall system performance.

Additionally, it’s important to evaluate network providers that can support your scaling requirements and ensure seamless connectivity across your IoT ecosystem. We’d recommend considering solutions such as low power, wide area networks (LPWAN) or satellite as both offer extended range and scalability.

To address challenges of increased power consumption, companies can explore energy-efficient IoT devices, implement power-saving features such as sleep modes, and utilise power management techniques to prolong battery life. Moreover, alternative power sources, such as solar or kinetic energy, can prove key for long-term sustainability.

Security should always be a top priority, but as mentioned, when scaling this is even more crucial. Companies can strengthen security by adopting a multi-layered approach. Incorporate encryption techniques, secure authentication protocols, and regular security audits. Implement secure coding practices and provide ongoing training to your team to enhance security awareness and ensure compliance with industry best practices.
 
 

The above list is by no means exhaustive, but we hope it highlights the importance of staying proactive. By acknowledging the evolving nature of IoT, the improving success rates, and the valuable insights gained during pilot phases, organisations can overcome hurdles and capitalise on the immense potential offered by IoT deployments.

Want some advice on your IoT project?

Navigate to IoT success with Ground Control's expertise and global support.

As a trusted partner for IoT projects worldwide, we have helped businesses across diverse industries achieve their goals. Complete the form below to start your journey with us.

Satellite IoT modules are transforming the way companies interact with their customers, increase operational efficiency, and gain insights into their business operations. Delivering truly global, reliable coverage, these modules enable organisations to unlock the full potential of the Internet of Things (IoT).

The latest research from IoT Analytics estimates that by the end of 2023, the IoT will be responsible for 16 billion active devices. But given the importance of reliable connectivity, how many of these devices will be satellite-enabled?

Graph showing Global IoT Market Forecast (in billions of connected IoT devices)
Source: IoT Analytics Research, State of IoT 2023
Note from authors: IoT connections do not include any computers, laptops, fixed phone, cellphones, or consumers’ tablets. Counted are active nodes/devices or gateways that concentrate the end-sensors, not every sensor/actuator. Simple one-directional communications technology not considered (e.g. RFID, NFC). Wired includes ethernet and fieldbuses (e.g. connected industrial PLCs or I/O modules); Cellular includes 2G, 3G, 4G, 5G; LPWA includes unlicensed low-power networks; WPAN includes Bluetooth, Zigbee, Z-Wave or similar, WLAN includes Wi-Fi and related protocols; WNAN includes non-short-range mesh, such as Wi-SUN; Unclassified proprietary networks include any range.

 
As you might expect, IoT connectivity continues to be dominated by Wi-Fi, Bluetooth and cellular IoT. But interestingly, the CAGR for each of these is predicted to decrease, in some cases significantly (cellular from 200% to 87%) by 2027. In contrast, satellite IoT connections are projected to grow from 6 million to 22 million (at a CAGR of 25%).

What are satellite IoT modules?

Satellite IoT modules or modems are specialised hardware components that enable devices to communicate with satellites and access global connectivity. These modules are designed to be power-efficient, compact, and compatible with existing IoT device architectures. Typically they are used in areas of IoT networks where traditional cellular networks or other forms of terrestrial connectivity are either unavailable or unreliable, such as remote or rural areas.

RockBLOCK-Diagram

How do they work?

Simply, satellite IoT modules work by leveraging satellite networks to establish communication between IoT devices and the central infrastructure.

IoT devices such as sensors or trackers are equipped with satellite modems (e.g. the RockBLOCK) that transmit data to satellites orbiting the Earth. Data is sent to a satellite, in this case a satellite within Iridium’s constellation, the satellite then relays the received data down to the ground station.

The ground station serves as a gateway to bridge the communication between the satellite and the Network Operations Centre (NOC), forwarding the data on to the appropriate destination. This can be a cloud platform, a server, or any designated system that collects and manages the IoT data.

How do satellite and terrestrial IoT modules compare?

Terrestrial and satellite IoT modules share many similarities. They both offer the necessary connectivity and processing power for devices to exchange data and come in multiple form factors depending on the deployment requirements. From PCBs intended to be built-in to the sensor array, to fully ruggedised and waterproof devices with integrated processing, storage and security features.

What’s more, all IoT modems require an antenna, the size of which will depend on the signal strength needed. Satellite IoT devices can have surprisingly small antennas if the orbiting satellite service operates in a high frequency, like Iridium (see the patch antenna on the RockBLOCK 9603, which measures just 25 x 25 x 4mm). Other satellite network operators leverage lower frequencies, which require larger, external antennas – Swarm, for example, needs a 20cm antenna to communicate with its satellites.

Terrestrial and satellite IoT modules also exhibit distinct differences that set them apart:

Connectivity Coverage

Satellite IoT modules use satellite networks to provide connectivity, whereas other IoT modules typically rely on cellular networks, Wi-Fi, or other forms of terrestrial connectivity. This allows devices equipped with satellite IoT modules to communicate from virtually anywhere on the planet, even in areas with limited or no cellular coverage.

Module Cost

Satellite IoT modules can be more expensive than other IoT modules due to the specialised hardware and software required to enable satellite connectivity. However, as the technology matures and the demand for satellite IoT applications grows, costs have already, and are likely to continue to, come down.

Communication Latency

Due to the time taken for signals to travel to and from satellites in space, satellite IoT modules can experience higher latency than their terrestrial counterparts. However with Low Earth Orbit (LEO) satellite constellations, for example Iridium, latency can be less than one second, providing high-quality, low-latency communication.

Further benefits to Satellite IoT

SECURITY AND DATA PRIVACY

Satellite IoT networks employ robust security measures to protect data transmission and ensure privacy. Encryption and authentication protocols are implemented to safeguard data integrity and prevent unauthorised access. Firewalls and VPNs are leveraged when data travels over public infrastructure like the internet, but this can be completely circumnavigated with either private lines or a private satellite network like TSAT.

VPN security confirmation on phone

RELIABLE AND RESILIENT

Satellite networks are designed to be highly reliable and resilient. They are less susceptible to environmental factors, natural disasters, or infrastructure failures that can disrupt terrestrial networks. Typically offering high reliability and uptime, satellite IoT ensures consistent data transmission and device communication even in challenging and remote environments.

Data transmission on laptop screen

SCALABILITY

Satellite IoT networks offer scalability to accommodate a large number of connected devices. Businesses can scale their IoT deployments without concerns about network capacity limitations or infrastructure upgrades. This scalability is crucial for projects that require the connection of a large number of sensors, devices, or assets spread across vast areas.

Two co workers mapping out project

RAPID DEPLOYMENT

Satellite IoT modules enable rapid deployment, especially in remote or temporary setups. They eliminate the need for building new terrestrial infrastructure or relying on existing networks. Companies can quickly establish IoT connectivity in remote or disaster-stricken areas, facilitating faster response times and data collection.

Satellite connectivity installation in remote area

The Future of IoT modules

The previously mentioned research from IoT Analytics, also noted that the integration of satellite connectivity options into LPWA chipsets, spearheaded by companies like Qualcomm, has the potential to accelerate the adoption of hybrid IoT devices. Sony Semiconductor has already introduced ALT1350, the first cellular IoT LPWA chipset with satellite connectivity, expanding the communication capabilities of IoT devices beyond conventional network limitations. This significant development paves the way for new possibilities in the IoT landscape. By incorporating satellite connectivity into LPWA chipsets, further innovation and growth are projected. Until then however, the combination of satellite and terrestrial networks still delivers organisations the flexibility to realise the full potential of their IoT deployments.

Choosing the right Satellite IoT modules

The majority of satellite IoT modules are proprietary technology. Simply, they are designed to leverage a specific satellite network, for example, Inmarsat, and often a specific airtime service, for instance, BGAN M2M. As each satellite network offers different coverage, reliability, latency and so on, and each service allows different data rates, message sizes and more, its key companies evaluate their connectivity needs thoroughly. Satellite connectivity can be expensive (see our post on how to reduce satellite connectivity costs), so typically businesses will only use this for areas of their IoT network where they are struggling with connectivity, or for the purposes of failover or backhaul. In any case, businesses should assess their data transmission requirements and select the most appropriate satellite airtime service for their application, before considering their hardware options.

If you do have any specific queries related to airtime, please don’t hesitate to get in touch. We’ve been doing this for over 20 years and though we have significant relationships with both Iridium and Inmarsat we’re not tied to any one provider, just helping you find the best solution for your project and budget.
 

Comparing popular Satellite IoT devices and airtime services

Cobham 540 Explorer

BGAN M2M Terminals
Service Provider:
Iridium
Iridium
Inmarsat
Connection Type:*
Messaging-based
IP-based service
IP-based service
Data Speeds:
n/a*
22 Kbps up, 88 Kbps down
448 Kbps up, 464 Kbps down
Response Time:
<1 second
<1 second
<2 seconds
Coverage:
Global
Global
Global, exc. polar region
Power Efficiency:
Very high
High
High

Ideal Applications:

  • Data buoys
  • Weather balloons
  • UAVs
  • Vessel Management Systems (VMS)
  • Environmental monitoring
  • Industrial Control Systems
  • Data loggers
  • SCADA telemetry
  • Pipeline monitoring
  • Smart farming
  • Real-time surveillance
  • High volume metering
  • High volume telemetry
  • Smart grid, smart metering, reclosure control
Service Provider:

Once companies have selected their preferred airtime service, it’s important to consider the interfaces and integration options provided by the satellite IoT modules. It is important to determine if the modules support the necessary interfaces (e.g., UART, SPI, I2C) for seamless connectivity with IoT devices or sensors. Additionally, assessing compatibility with standard IoT protocols (e.g., MQTT, HTTP) is vital to ensure smooth integration within your existing IoT infrastructure.

Another aspect that businesses need to assess is the size and form factor of the satellite IoT modules. Consider any space limitations, weight restrictions, and physical constraints that may be relevant. For instance, if your application requires burying sensors or housing them within an enclosure, antenna options must be considered. Depending on factors such as the enclosure material, an external antenna may be required to enhance signal strength. This improves communication reliability and can help facilitate clear line-of-sight with geostationary satellite networks.

Moreover, companies must verify that the satellite IoT modems comply with relevant certifications and regulatory standards applicable to their target markets. Compliance with certifications like FCC, CE, and RoHS ensures adherence to quality, safety, and environmental standards. For those with deployments spanning larger geographical areas, it’s prudent to ensure that there are no local restrictions for satellite connectivity; some countries such as India restrict use without prior government approval.

Additionally, it is important to assess the cost considerations associated with the satellite IoT modules. This includes evaluating module pricing, airtime costs, and any additional fees or licensing requirements. Considering the total cost of ownership over the desired lifespan of the IoT project will provide a comprehensive understanding of the financial implications.

Finally, though satellite IoT modules are designed to be power efficient, it is necessary to evaluate power consumption. Depending on the deployment scenario, it might be worthwhile to consider modules that can leverage alternative power sources such as solar power, like the Iridium Edge Solar.

By carefully considering these factors, companies can make informed decisions when selecting satellite IoT modules, ensuring optimal integration, performance, and cost-effectiveness for their specific IoT projects.

Overall, satellite connectivity is a game-changer for IoT, enabling devices to operate in previously unreachable areas and opening up new possibilities for businesses and industries. By choosing the right satellite IoT module and airtime service, businesses can unlock the full potential of IoT and drive innovation in their respective fields.

Unlimit your IoT deployment today

As industry leaders that have been designing and manufacturing satellite devices for over 20 years, with strong partnerships with top satellite providers like Inmarsat and Iridium, we have the expertise, experience, and access to competitive satellite airtime rates to make your IoT initiatives a success.

Don't let geographical limitations hold back your IoT ambitions. Let our team of experts guide you towards achieving your goals. Fill in the form below and take the next step towards unlocking the full potential of your IoT project.

The Internet of Things (IoT) has already transformed industry with access to unprecedented levels of connectivity, data collection, and analysis. By enabling devices to connect and communicate with each other, IoT has facilitated smarter, faster business decisions across almost every sector. A reported 77% of surveyed companies had deployed at least one IoT project in 2021, and the remaining 23% were said to either be trialling a project or planned to within the next two years.

The benefits of IoT projects can be grouped into three categories: Operational Efficiency (improving business processes), Customer Experience (enhancing customer relationships), and Growth Opportunities (new revenue streams). Consulting firm McKinsey estimated IoT could enable $5.5 to $12.6 trillion of value globally by 2030. But 75% of businesses reported struggling with connectivity issues when trialling IoT projects, and 91% believe that satellite connectivity is key to improving the effectiveness of IoT solutions.

What is satellite IoT?

IoT describes a system of interconnected devices, which are also connected to the internet. Satellite IoT describes the systems and networks, or assets within a network, which are connected via satellite. This can include a variety of devices such as sensors, trackers, and other smart devices, often located in remote or hard-to-reach areas where cellular coverage is not available or reliable, and where it wouldn’t make financial sense to build the appropriate infrastructure to support e.g. fibre connectivity.

Satellite-enabled devices collect data which is then transmitted to a satellite within the chosen network. The satellite relays the data to a ground station, from where it is sent to the application endpoint for processing and analysis. This enables real-time monitoring and control of devices and applications, even in remote locations, making it an ideal solution for industries such as oil and gas, agriculture, energy, and others.

Different types of Satellite IoT

There are three types of satellite networks used to support IoT connectivity: Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geostationary (GEO).

For a more detailed overview on how satellite orbit heights impact satellite communication, please visit our satellite orbit height guide.

Categorised by satellite orbit height from the Earth’s surface, Low Earth Orbit (LEO) is the closest at 160 – 2,000km (99 – 1243 miles), followed by Medium Earth Orbit (MEO) which is relatively rare, with only 10% of satellites orbiting between 10,000-20,000 km from the Earth’s surface. The furthest orbit is Geostationary Orbit at 35,786 km (22,236 miles).

Satellite networks also differ based on deployment location and ground coverage area. This, to a degree, lends them to particular IoT use cases. For instance, cross-linked LEO satellite constellations offer low latency and global coverage, making them ideal for mobile applications like asset tracking. MEO satellites, with broader coverage areas, are used for global navigation and timing services. GEO satellites offer a stable, reliable connection that’s ideal for higher data rates in static use cases such as oil and gas pipeline monitoring.

Understanding the different types of satellite networks is key to choosing the right solution for your IoT use case.

Sata-Orbits-Map

LEO Satellite connectivity

Satellites in LEO orbit closest to the Earth and move quickly, taking just 90 minutes to circle the planet. These satellites are much smaller than their MEO and GEO counterparts and because of their proximity to the Earth, each satellite provides coverage to a relatively small area of the planet’s surface as it travels overhead. There are three commonly used ways to maximise coverage for satellites in LEO.

Some satellite operators – notably Iridium – create a mesh network to facilitate reliable connectivity. Satellites within a mesh network are able to communicate with one another, passing data from one satellite to another until the final destination is reached. Antennas communicating with a mesh network don’t need to be ‘pointed’ towards a single satellite, as data can be picked up by any satellite within the constellation and passed through the mesh network, to the ground station. This makes these networks ideal for mobile IoT applications, such as weather balloons or data buoys.

Another option is to have fewer satellites but more ground stations, so there are more places on Earth that can receive the data from the orbiting satellites. This allows for more bespoke local service provisions such as local network access, and is used by Globalstar and Orbcomm.

Newer entrant satellite operators such as Swarm have opted for a relatively large number of very small satellites (called cubesats); the sheer quantity of satellites means there’s almost always one overhead, so antennas don’t need to be pointed.

LEO satellite networks are well-suited for environmental and asset monitoring applications sending small data packets. The low-cost setup usually requires just one IoT device per modem, and service reliability is very high.

What about cubesats?

Cubesats – a form of nanosatellite – also operate in LEO. These miniature satellites are made up of standardised ‘units’ – 1U, 2U etc. indicates the size. They were initially developed for educational and technology demonstration purposes, but have now become a popular choice for a wide range of space missions, including Earth observation, communication, and scientific research.

Due to their small size and low cost, cubesats can be relatively inexpensively used to build constellations of satellites for various applications, including satellite IoT connectivity. However, their small size leads to a shorter operational life expectancy, so operators need large numbers of active and failover cubesats to ensure wide-spread and reliable coverage.

MEO Satellites

MEO satellites orbit the Earth at a higher altitude than LEO satellites, typically between 2,000 and 36,000 kilometres. As MEO satellites are comparatively larger than LEO satellites, they can cover larger areas of the globe’s surface and provide more stable connectivity. As such MEO satellites are commonly used in maritime and aviation applications, where constant connectivity is essential for safety and communication.

In addition, MEO satellites can facilitate higher data rates, making them ideal for IoT applications that require large amounts of data to be transmitted quickly, for example, video surveillance and remote sensing.

However, due to the higher altitude MEO satellites have a longer round-trip time, which can result in higher latency. Additionally, MEO satellites are more expensive to launch and maintain than LEO satellites, which can make them less accessible for smaller IoT applications.

Network operators include SES and Galileo.

Geostationary Satellites

Geostationary satellite connectivity for IoT applications involves the use of satellites positioned in a fixed spot above the earth’s equator, around 36,000 km away from the surface. This type of connectivity is suitable for applications that require high bandwidth and consistent signal coverage, such as video streaming, remote surgery, and aviation communications.

One advantage of geostationary satellite connectivity is its wide coverage area, with each satellite able to ‘see’ almost a third of the earth’s surface. This makes it ideal for providing connectivity in remote or hard-to-reach areas. Additionally, because the satellite is stationary, it can provide a constant link between the IoT device and the ground station.

However, the high altitude of geostationary satellites results in latency of about 700 milliseconds (compared to 50 milliseconds for LEO satellites), which can affect certain applications that require real-time responses. Also, because there are only a limited number of geostationary orbital slots available, the cost of launching a new satellite and securing a slot can be prohibitively expensive.

Despite these limitations, geostationary satellite connectivity remains a valuable option for IoT applications that require high bandwidth and wide coverage.

Network operators include: Inmarsat, Intelsat and Eutelsat.

Choosing the right type of satellite IoT

When it comes to choosing the right type of satellite IoT, there are many factors to consider. At Ground Control, we tend to take our customers through the following questions to help them narrow down their options:

  • How data intensive is your application?
  • How time-critical is receipt of your data?
  • Where are your assets located?
  • Are your assets fixed or mobile?
  • What level of data security is required?



Though that isn’t a comprehensive list, it should be enough to guide some initial investigations.

We understand that navigating the world of satellite IoT can be daunting, which is why our team of experts is always on hand to answer your questions and help you choose the right solution for your business. Contact us today at hello@groundcontrol.com to learn more about how we can help you connect anywhere in the world.

Looking for a satellite connectivity partner?

Having partnered with satellite network providers such as Iridium and Inmarsat for well over a decade, we have access to competitively priced tariffs, and can also be very flexible in terms of bundled data.

So if you are working on an IoT project and would like some no pressure, objective advice, simply fill in the form and one of our expert team will get back to you.
Call or Email Us

The Internet of Things (IoT) describes connecting any device to other connected devices and the internet, or other communications networks. This allows all devices to collect and share data about their environment and how they are used. In short, IoT makes things smart.

Massive IoT then, is simply IoT on a massive scale; multitudes of sensors, connectivity and data processing to create new solutions. Many businesses have already adopted Massive IoT technology, citing reduced costs and wastage, and improved operational efficiency among the benefits.

Given its obvious applications to the Water industry – including smart metering and remote equipment monitoring – it’s unsurprising that sensors in the water and wastewater treatment industries are forecast to grow to $2 billion by 2030. But why is this so important?

Water is a finite, essential resource. In the UK alone, it’s estimated that by 2040 we’ll see between 50-80% less water in rivers during the summer months, and by 2050, the population will have risen from 67 million to 75 million. To put this in perspective, the Environment Agency has predicted England will run short of water within 25 years, with Sir James Bevan describing the country as facing the “jaws of death”.

Though total leakage across England and Wales has decreased over the last five years, Ofwat has estimated that currently, one fifth of all running water through pipes is lost to leakage. To even contemplate meeting increases in demand while navigating challenges such as urbanisation and climate change, suppliers must look to processes and infrastructure, across entire networks, to ensure these are as efficient as possible.

Technology advances have a history of providing the solutions we need, and thankfully, there are many ways Massive IoT is already and will continue to optimise operations for the Water and Wastewater treatment industries.

Factors driving Massive IoT adoption in the Water industry

The Water sector has already implemented a variety of sensors to monitor water quality, manage smart meters and optimise distribution. Traditionally infrastructure including pumps and reservoirs have been monitored using SCADA systems. However, the final segment of pipeline responsible for delivering water to a customer’s premises, has always remained somewhat unknown to suppliers. For information here, Water companies have relied heavily on feedback from customers; for example, calling to report a leak or fault.

As Jat Brainch, Chief Commercial and Product Officer at Inmarsat puts it – “you can’t manage what you can’t measure, and automation and digitalisation of the data capture process to collect granular, real-time results, is becoming increasingly essential”. In short, to be able to get a better handle on water management, companies need data, delivered consistently and reliably to inform decisions.

Moreover, as the risks and realities associated with climate change become better understood, so does the requirement for all organisations to reduce their overall environmental impact. This boils down to improving water optimisation and wastewater treatment so water can safely be recycled. Both of which can be better facilitated with IoT technologies.
 
 

GC-Water-Blog-1

5 ways Massive IoT can benefit Water and Wastewater companies

 
 

  1. Smart water management
  2. Water quality and safety monitoring
  3. Improved customer engagement
  4. Environmental monitoring and reporting
  5. Equipment management and maintenance
Engineering blueprint of weir

1. Smart water management

Utilising IoT technologies such as sensors, geospatial mapping, and big data analytics, companies can efficiently plan, develop, distribute, and manage water resources. Real-time monitoring and predictive analytics enable transparent pipeline management, water conservation, leak detection, and optimised service planning.

2. Water quality and safety monitoring

Monitoring water quality is crucial to ensure that suitable quality standards are maintained at every stage of the water cycle, from collection through treatment and distribution.

Despite laws that require water companies to treat and dispose of wastewater, raw sewage and contaminants from factories are still legally and illegally dumped in waterways in much higher concentrations than are safe for human and animal health. Estimates reveal that in 2020, there were more than 400,000 instances of discharged raw sewage into English and Welsh rivers.

Real-time monitoring systems with sensors provide data on various parameters, including pH level, dissolved oxygen level, and turbidity. This data helps identify contamination sources faster and prevent further spread, ensuring suitable water quality standards are maintained throughout the water cycle.

Wastewater plant
Photo of severn trent smart meter

3. Improved customer engagement

Advanced Metering Infrastructure (AMI) technology enables real-time data collection and evaluation of water consumption. Water companies can provide customers with real-time alerts about network damage, leaks, and adjust pricing based on insights. This empowers customers to make conscious decisions, leading to improved customer satisfaction, engagement, and reduced water consumption.

4. Environmental monitoring and reporting

Blocked, overflowing systems can cause flooding, erosion, turbidity, storm and sanitary sewer system overflow, and infrastructure damage. While most businesses have some form of environmental monitoring system in place, there are many challenges associated with measuring and reporting on water usage. For example, remote locations can be difficult to access and monitor; pipes can become blocked or damaged; and heavy rainfall can cause flooding and damage equipment.

By combining data from sensors within Powered Telemetry Modules (PTM), companies can monitor and forecast events such as flooding, erosion, and infrastructure damage. Utilising a variety of monitoring tools, proactive measures can be implemented to prevent and mitigate damage in areas most at risk.

OBSCAPE ENVIRONMENTAL MONITORING CASE STUDY
Obscape service in use
industrial water turbine

5. Equipment management and maintenance

Remote monitoring and analytics help identify deviations in asset performance, allowing companies to troubleshoot and address problems before they cause damage or disruption. Predictive maintenance software alerts technicians about necessary repairs, reducing maintenance costs and preventing larger repairs or outages.

Challenges to Massive IoT deployment success: Cost, cybersecurity and connectivity

Water infrastructure is vast. Due to the volumes required, the cost of modernisation and installation of new hardware is substantial. So much so that installation is often cited as the largest cost challenge when deploying IoT solutions at scale.

In addition, legacy systems and ageing infrastructures common to businesses within the Water and Wastewater sector means that adding devices may not be quite as simple as just installing. Often some level of customisation will be required to ensure newly introduced devices work well within existing operations.

However, IoT sensors, specifically those which are battery powered, have become increasingly cost-effective and providers don’t need to light up all pipelines within a network to reap benefits. When working with smart meters for example, even relatively small numbers can be used to affect change. After all, any increase in data and operation visibility can help water companies make smarter decisions and reduce maintenance costs.

Next, cybersecurity. Though Water companies must and do ensure processes require the very minimum of customer data in each instance, with increased data and data transmission, keeping this information secure from the reach of hostile parties becomes more difficult.

In 2021, a cyberattack attempt was made to tamper with the levels of sodium hydroxide in Oldsmar, Florida’s water supply. Thankfully the plant operator observed what was going on and the attack was blocked in time, but the incident does serve as a reminder of national infrastructure vulnerabilities.

Addressing this challenge requires companies and organisations to build security through every layer of the stack, and is essential to successful IoT deployment.

Finally, connectivity. It would be remiss to not highlight that the ability to quickly adapt to surges, peaks, and troughs is dependent on reliable, consistent data. Ultimately your decisions can only be as fast and as smart, as the data at hand allows. As water company networks tend to span over large areas, it’s likely some of your network will fall outside terrestrial coverage. It’s estimated that just 15% of the Earth’s surface is supported by cellular, whereas Satellite networks like Iridium cover everywhere and anywhere – including both poles.

What’s more, a recent paper found 75% of decision makers struggled to deploy their IoT projects because of connectivity issues. So it’s important companies consider connectivity options early on in IoT planning, opting for a connectivity strategy able to consistently support all assets within a network.

In addition, it’s key companies in Water and Wastewater industries ensure connectivity strategies include alternate connectivity options for backup and backhaul. This way, should there be a problem with the terrestrial networks due to e.g. bad weather or natural disasters, your IoT application isn’t negatively affected by long delays or gaps in data.

Simply, the benefits of Massive IoT are massive. Unlocking the power of smart devices and data analytics, through Massive IoT and AI, is key to ensure a more resilient, optimised and secure water network for the environment today and into the future.

Want to discuss your connectivity options?

With our extensive experience partnering with satellite network providers like Iridium and Inmarsat, we offer competitive pricing and flexible data bundles.

If you're looking for objective advice and support for your IoT project, fill in the form below. Our expert team is here to assist you.

Satellite IoT is growing in popularity, providing reliable connectivity to remote locations that would otherwise be challenging or even impossible to reach with terrestrial networks. As the world becomes more connected, the demand for real-time data from even the most remote locations has increased. Satellite IoT provides the solution to this need by offering truly global connectivity for real-world applications.

Satellite IoT is being used in a variety of industries, including healthcare, agriculture, workforce safety, and more. Let’s dive into just some of the most prominent use cases for satellite IoT…

1: Healthcare

IoT has revolutionised the healthcare industry by providing innovative solutions to improve patient care, reduce costs, and increase efficiency. IoT in healthcare refers to the use of connected devices, sensors, and data analytics to collect and analyse patient health data in real-time. This could include remote patient monitoring, smart medical devices and wearable technology like fitness trackers and smart watches.

Satellite IoT can also facilitate medical and healthcare accessibility to patients in remote areas who are unable to travel. For example, utilising the RockBLOCK 9603 technology, satellite IoT has enabled the transportation and delivery of emergency and essential medical supplies to vulnerable people who are at high risk if they travel.

READ HEALTHCARE BY DRONE
RainbowOne_SKYLIFTUAVjpg-1
Synnefa-smart-greenhouses (1)

2: Agriculture

The agriculture industry is utilising satellite IoT to enhance productivity and lower expenses. By monitoring soil moisture, temperature, and other environmental factors, farmers can optimise their crop yield and reduce waste. This is sometimes referred to as Smart Farming. Satellite IoT can also be used to track livestock and monitor their health – improving overall animal welfare and reducing losses.

COSMOS-UK has installed BGAN M2M terminals at remote soil moisture monitoring locations, to help combat climate change. The soil moisture data intelligence delivered by the Hughes 9502 specifically, to agricultural and environmental scientists, has the potential to transform the way we understand and model the natural environment.

Furthermore, satellite IoT has supported Synnefa in Kenya, to operate outside of terrestrial infrastructure by transmitting sensor data to enable smarter predictions for optimum harvesting times. The introduction of precision farming has been so successful, Synnefa has been able to help farmers:

  • Save water by over 50%
  • Reduce fertiliser application rates by 41%
  • Increase production by 30% when compared to yields prior to the use of their devices.
  • SEE SYNNEFA SMART FARMING

    3: Asset Tracking and Monitoring

    Tracking and managing assets in real-time, providing valuable data on asset location at any given time is made possible with IoT technology. With satellite-enabled tracking devices, businesses can keep track of their assets no matter where they are in the world, even in the most remote locations. But here, it’s not just vessels, wind turbines and remote workers who can be tracked – animals can be too!

    Illegal poaching is a big problem in Gabon, Africa. RockREMOTE with IMT enablement has equipped the rangers in Gabon with the latest in AI-powered camera trap technology to effectively monitor and prevent illegal poaching in the forest. With this advanced technology, endangered African species and iconic African wildlife have greater protection from poachers for this generation and the next.

    READ MORE ABOUT GABON
    jungle3-1
    Military-personnel-in-snowy-conditions

    4: Workforce and Personnel Safety

    Satellite IoT can be harnessed to monitor the safety of lone or remote workers in hazardous environments. By providing real-time alerts in the event of an incident or emergency, companies can respond quickly and potentially save lives. For example, workers in mining or oil and gas operations can wear wearable devices that monitor their location and vital signs, alerting supervisors in the event of an accident or injury. In addition, monitoring remote military personnel and natural disaster response teams is critical to their safety and well-being.

    For example, the RockSTAR device has been used by the Ministry of Defence in their training. The RockSTAR was paired with bluetooth heart rate monitors, meaning biometrics could be monitored throughout with the added benefit of worldwide tracking and two-way communications. As well as critical monitoring, satellite IoT can also be leveraged for more leisure-based tracking and monitoring applications – including ultra-marathon runners via the RockSTAR tracking and two-way communications device.

    SEE MILITARY TRACKING

    5: Energy and Renewables

    The energy sector is also seeing the benefits of satellite IoT. The technology enables remote monitoring of renewable energy infrastructure in real-time, allowing for early identification of any faults or issues, thus preventing downtime and maximising energy output. The performance of renewable energy assets is also optimised by collecting and analysing data on weather patterns, energy production, and equipment performance. This data can be used to improve efficiency, reduce costs, and even enhance the lifespan of renewable energy assets.

    With five hydroelectric power stations in Snowdonia, North Wales, RWE maximises its renewable energy output from the reservoirs with a remote IoT solution – the Hughes 9502.

    READ ABOUT FACILITATING RENEWABLE ENERGY
    RWE-Hydrology-Weather-Station

    Satellite IoT vs. Traditional Cellular Networks

    While traditional cellular networks are sufficient for many use cases, they have limitations when it comes to remote locations.

    One of the biggest advantages of satellite IoT is that it provides truly global connectivity, even in the most remote and inaccessible locations. Unlike traditional cellular or Wi-Fi networks, satellite signals can reach anywhere on the planet, making it ideal for industries where assets are remote or located in harsh environments.

    With satellite IoT, data can be transmitted from quite literally anywhere in the world, making it ideal for applications where cellular coverage is limited or even non-existent. Satellite IoT is also more reliable than cellular networks in many cases, as it is resilient to interference or disruption from extreme weather events.

    However, it’s not necessary to choose either terrestrial or satellite connectivity. Satellite networks can be deployed quickly and easily, using the same messaging protocols as terrestrial networks, allowing businesses to scale their operations up or down as needed without having to worry about the limitations of traditional networks. What’s more, for businesses and industries that require global connectivity, the cost of deploying and maintaining satellite IoT devices can often be less expensive than building and maintaining traditional terrestrial networks from scratch. It can also be cheaper than deploying remote field engineers to remote sites.

    In Summary…

    Satellite IoT provides reliable connectivity to remote locations; bridging the connectivity gap that would otherwise be difficult or impossible to achieve with traditional cellular networks alone.

    From reliable communication to real-time data collection and analysis, satellite IoT is changing the game for businesses and entire industries that need to stay connected no matter where their assets are located. Furthermore, as satellite technology continues to evolve and become more affordable, we can expect to see even more innovative use cases emerge in the coming years.

    Unlock the Full Potential of Your IoT Project

    Incorporating satellite IoT into your existing business operations can revolutionise what you can achieve. With satellite IoT, you can access data and insights that were previously unavailable or difficult to obtain with traditional networks and connectivity options.

    Contact us to discover the added value of satellite IoT to your business today. We’re here to help and provide solutions to your connectivity challenges.

    In this post we’re exploring your options for wireless connectivity of IoT devices, and the differences between NB-IoT and LoRaWAN. We’ll see how LoRaWAN and satellite connectivity can work together to maximize coverage, connectivity, and cost control.

    Why choose LPWAN as a wireless solution for widespread IoT devices?

    This chart, courtesy of You Li, outlines the major technologies in place for the wireless connection of IoT devices. In short, if you need to transmit data wirelessly between sensors and gateways over a large area, you have the choice of cellular or LPWAN connectivity.

    Cellular, however, is both expensive and power hungry, and carries the risk of the technology being retired (e.g. 2G and 3G networks being phased out). Further, only 15% of the Earth’s surface is covered by cellular networks (source: World Economic Forum).

    LPWAN (Low Power Wide Area Network) technologies have a lot of plus points: battery lives that span years; low cost; long range. Only very small amounts of data can be transmitted, but that’s adequate for environmental monitoring, asset management, tracking, metering etc.

    Chart-showing-communication-options

    Within LPWAN there are many technologies and standards, and IoTForAll has an excellent article explaining the pros and cons of the main options. We’re summarising the most popular choices here.

    LTE-M is USA-centric, but offers higher data rates than many, and cuts across borders with ease, so it’s good for mobile applications.

    NB-IoT transmits less data but equally consumes less power; it’s generally lower cost, and more widely available outside of the USA than LTE-M. However it’s not yet effective for mobile use cases as it requires roaming agreements between different telco providers. It communicates with the cloud directly, unlike LoRaWAN which requires end nodes to transmit data to a gateway first, and from there to the cloud; this makes networking of NB-IoT easier (source). NB-IoT also offers the greatest wireless reach, with devices able to communicate wirelessly over distances as great as 22 km. This is dependent on location – NB-IoT works well in cities but is less stable in rural areas where cellular / wifi connectivity is limited.

    LoRaWAN – which combines the standard for the physical layer (called LoRa), plus the MAC layer and application standards – is also typically used for static communication scenarios such as soil moisture sensors, water levels and quality, gas / oil pipeline monitoring and glacial melt. Because public networks extend across broad geographic regions, LoRaWAN can be used for some mobile IoT applications such as fleet monitoring and animal tracking too. Telecom operators operate public LoRa networks, but you can also set up your own private network relatively inexpensively. Wirelessly connecting devices up to 16 km apart, LoRaWAN has no dependence on cellular or wifi, and so offers relatively stable coverage in rural and remote areas (source).

    LPWA connection share by technology, 2020-2025

    Share of LPWAN connections (Statista derived data)

    By 2025, it’s anticipated that on a global scale, NB-IoT and LoRa will, between them, have 84% of the share of LPWA connections (Statista).

    Where does satellite IoT come into the picture?

    All of the LPWAN technologies need to be able to transmit their data to the cloud, and if they operate far outside of cellular or wifi coverage – i.e. in very remote locations such as mountains, oceans, deserts and forests – they need a mechanism for data backhaul.

    Diagram showing how satellite and LoRaWAN networks communicate

    In this example, sensors are transmitting data using LoRaWAN to the hub, or gateway. The hub receives the data, optimizes the payload (this is important to keep data transmission costs down), and will transmit the data via satellite if cellular is not available.

    In this example, we’re using a satellite constellation in Low Earth Orbit – Iridium – which has 66 satellites overhead, ensuring that 100% of the globe can connect with their satellite network. The satellite returns the sensor data to a ground station, from where it’s forwarded to the application service, database or dashboards.

    Iridium is a great choice, but there’s no reason in principle why you couldn’t also transmit to a geostationary satellite network such as Inmarsat, as long as your gateway or hub has line-of-sight to the satellite.

    One of Ground Control’s customers is using this method to capture sensor data from a remote reservoir in Wales, UK. The automated monitoring system is designed to alert engineers to potential equipment failures, to minimize the need for unplanned maintenance visits. Challenges included the lack of mobile phone coverage, no provision of a telephone line or ADSL connection, and a wide area distribution of a large number of sensors. A cabled solution was quickly ruled out due to the logistical challenges, time and cost implications. The solution: using satellites to backhaul LoRaWAN network data.

    Where else can you see satellites and LoRaWAN working together?

    • Agriculture for a wide range of monitoring applications including nutrients, soil temperature and moisture levels or keeping tabs on water quality
    • Mining for monitoring the status of tailings storage facilities (TSFs), resource and pipeline monitoring
    • Transport and logistics to track end-to-end to reduce supply chain losses or monitor vehicles to prevent theft
    • Environmental agencies to monitor everything from deforestation to ocean plastic
    • Oil and Gas for pipeline and offshore site monitoring
    • Renewables for solar array and wind farm monitoring.

    Recommended satellite terminals for LoRaWAN data backhaul

    If your use case is static and not in the polar regions, Inmarsat’s BGAN M2M service will meet your needs, with its tried and trusted geostationary satellites. The Cobham Explorer 540 or the Hughes 9502 are both reliable and economical devices which can be solar or battery powered.

    A robust option which will work for both static and mobile applications is the truly global Iridium satellite network. Iridium has two airtime options for IoT data – Short Burst Data (SBD) or Certus 100. SBD is a message-based platform and can transmit payloads of up to 340 bytes up, 270 bytes down. This isn’t usually enough for aggregated data from a LoRaWAN gateway. If you need more capacity, or an IP-based solution, Certus 100 offers both: an IP transmission option at 22 / 88 Kbps, or a message-based option (called IMT) capable of 100kB / message.

    For Certus 100 we’d recommend the RockREMOTE (for use within an enclosure) or RockREMOTE Rugged.

    Selection of Satellite IoT Devices

    Would you like to know more?

    If your sensors are widespread and in a remote area without terrestrial connectivity options, we can help! Solving remote connectivity challenges is what Ground Control exists to do.

    Call or email us, or complete the form, and one of our expert team (we've been doing this for over 20 years) will be in touch to discuss your options.
    Call or Email Us

    Industry 4.0, alias, Fourth Industrial Revolution, describes the integration of advanced technologies such as the Internet of Things (IoT), Artificial Intelligence (AI) and robotics, quantum computing, genetic engineering and more. It represents a shift to a more connected world, whereby the lines between the digital and physical are blurred.

    Also referred to as Smart Industry, Industry 4.0 is transforming businesses, enhancing and optimising operations with real-time monitoring and control, and enabling new business models, for example, mass customization.

    Cisco’s Annual Report predicted there would be almost 30 billion connected devices by 2023 and Statista estimated 15.1 billion would be IoT connected devices. Though we are still scratching the surface of the possibilities open to us as a result of IoT and Industry 4.0, more generally, all of these technologies and outcomes are dependent on connectivity. Without connection, the insights available via data transmission and analysis remain elusive.

    Meeting the demands of a connected world

    In order to support this increasingly connected world, governments and organizations have largely focused on building out high-speed broadband networks, expanding wireless coverage and investing in smart city infrastructure. Though some parts of the globe have made significant progress, not least those in developed countries, there are still substantial gaps. At the beginning of 2023 it was estimated that just 64.4% of the global population had access to the internet.

    In November 2022, the UK government pledged £5 billion to deliver gigabit-broadband to a minimum of 85% of premises by 2025 and the original target of ‘nationwide’ was pushed back to 2030.

    The role of 5G in Industry 4.0

    5G’s role in the future of Industry 4.0 is significant. 5G enables a much larger number of connected devices to operate simultaneously, with faster response times and higher levels of reliability. This is particularly important for IoT applications that require real-time data processing, such as smart city infrastructure.

    The 5G triangle represents the full spectrum of capabilities, from high speed data transfer to low latency connectivity for mission critical applications, and efficient connectivity for the large number of IoT devices that will be connected to the network.

    1. Enhanced Mobile Broadband (eMBB)

    Fast data transfer, low latency
    Data transfer speeds up to 20 Gbps and latency as low as 1 millisecond
    Use cases: High bandwidth applications, for example, video streaming and virtual reality.

    2. Ultra-Reliable Low Latency Communication (URLLC)

    Low latency, high reliability
    Latency as low as 1 millisecond and reliability of up to 99.999%
    Use cases: Mission-critical applications such as autonomous vehicles.

    3. Massive Machine-Type Communication (mMTC)

    Low power, low bandwidth
    Designed to support up to 1 million devices per square kilometre
    Use cases: Applications with a high volume number of devices. For example, automated supply chain management, infrastructure for smart cities.

    5G Triangle

    In addition, 5G can help to address some of the key challenges facing IoT, such as security and privacy, by providing more robust and reliable connectivity.

    However, though 5G is capable of delivering broadband across short distances, it was designed to enhance coverage in urban regions with dense populations – not for rural, remote areas. 5G is currently sitting at an 8% global adoption rate, with terrestrial networks more widely covering just 15% of the globe. It’s clear telecommunications infrastructure alone cannot support this new, interconnected world.

    As Tom Stroup, President of the Satellite Industry Association explains – “We’ve seen a recognition that many of the things that are desired by 5G can only be achieved with the ubiquitous coverage that satellite networks provide.”

    The future of 5G: Satellites

    Though connectivity is about more than coverage, one of the primary benefits of leveraging satellites in 5G networks is 100% global coverage. Unlike traditional mobile networks or fibre connectivity which rely on infrastructure, satellites can provide coverage anywhere and everywhere on Earth.

    Another advantage is that Low Earth Orbit (LEO) satellites can deliver low latency, high speed connectivity. Latency is an important consideration for time critical applications such as remote surgery or autonomous vehicles where delays could lead to severe consequences. As LEO satellites are positioned between 160 – 2,000km (99 – 1243 miles) from the Earth’s surface, latency can be as low as 20 milliseconds which is comparable to that achieved via terrestrial networks. Moreover, the additional bandwidth would place 5G networks in the best possible position to accommodate ever increasing data traffic and number of connected devices.

    Ultimately satellites could be used to complement 5G networks in three main ways:

    1. Expanding coverage to include rural, remote areas,
    2. Creating redundancies, and
    3. Additional backhaul.

     
    Though it’s likely the role of satellites will look slightly different depending on the country and region and thus bandwidth and coverage already available, if successful these could lead to several additional business models.

    But the how is slightly more complicated. Interoperability isn’t a new conversation within the communications industry but it wasn’t until 2017 that a formalized working group recommended 5G technology should be able to integrate non-terrestrial networks (NTN) such as fibre and satellites. Fast forward to July 2020, 3GPP Release 16 began to address this challenge.

    What is
    3GPP?

    The Third Generation Partnership Project (3GPP), is a collaboration between various telecommunications standards organizations. The main focus of the 3GPP is to develop specifications for wireless communication systems, including 2G - 5G technologies. These specifications include protocols for cellular networks, as well as guidelines for interoperability between different devices and networks, including non-terrestrial networks.

    3GPP Release 16: Benefits and shortfalls

    Release 16 outlined multiple significant improvements not least, access technology standards for using higher frequency New Radio, supporting greater signal bandwidth and lower latency. Of those relating to interoperability, dual connectivity was extended to support NTN. Meaning in theory satellites could connect assets in rural areas where cellular coverage was limited and integrated access and backhaul was named as an area of study.

    Despite these improvements, there were some associated shortfalls. One of the main challenges with 5G over satellite is latency. While as previously mentioned, Low Earth Orbit (LEO) satellites can achieve latency times as low as those associated with cellular, this isn’t always possible.

    For geostationary (GEO) satellites, which are located roughly 34,000km above the Earth’s surface vs LEO’s 160 – 2,000km, the round-trip time is longer; closer to 270 – 540 milliseconds. As Release 16 didn’t account for this, it meant satellite operators needed to develop their own solution to mitigate potential latency issues.

    What’s more, Release 16 didn’t account for mobility issues. This is more applicable to LEO satellites as these networks create a mesh of satellites around the globe and pass data as required between satellites and various ground stations. Particularly in the case of asset tracking applications where assets are moving, mobility and thus handing data from one satellite to another, becomes more important.

    While Release 16 defines the interfaces between the UE and the core network, it does not provide detailed guidance on how to handle handovers between terrestrial and satellite networks. This can result in disruptions to the user experience as the UE moves between different network environments.

    Ultimately Release 16 highlighted the importance of collaboration. Just one great example formed following Release 16 is that between Inmarsat and MediaTek in late 2020.

    Iridium-Satellite-Map

    Their collaboration involved a successful field trial which ultimately contributed to 3GPP’s Release 17 standardization work on NTN. Utilising NB-IoT technology, a bi-directional link from MediaTek’s satellite-enabled narrowband service to Inmarsat’s Alphasat L-band GEO satellite was established. As Jonathan Beavon, Senior Director at Inmarsat concluded – “testing MediaTek’s standard NB-IoT chip over Inmarsat’s established GEO satellite network has proven technology from mobile networks works effectively over GEO satellites with little modification and will provide a very cost effective path to ubiquitous and hybrid global IoT coverage.”

    Release 17

    In 2022, 3GPP Release 17 marked the most recent standard for 5G Networks and was the first to outline technical specifications for direct-to-device 5G over satellite.
    3GPP Release 17 timeline. Original source: https://www.3gpp.org/specifications-technologies/releases/release-17

    Specifically addressing interoperability, Integrated Access and Backhaul (IAB), and network slicing were extended to support NTN. The former, IAB, is particularly relevant for satellite operators as it helps address issues associated with latency by providing a more direct connection between device and satellite. Network slicing on the other hand is best exemplified by applications such as smart cities. Network slicing enables specific applications within the wider smart city network to utilize allocated network slices. So in the case of traffic monitoring and management, prioritising the utilization of a low latency, high bandwidth network slice ensures this application is better supported.

    Release 17 also included additional features for dual connectivity. These cover support for more advanced network slicing configurations, which can help to improve the efficiency of network resources.

    Moreover, Release 17 outlined enhanced support for Low Earth Orbit (LEO) satellites. Mobility issues were addressed by new features such as satellite handover, enabling seamless connectivity as devices move from one satellite to another.

    The future of wireless communications

    Release 17 was the first to position satellites as a critical component of the 5G ecosystem. Though this is a significant step forward, introducing new technology into any architecture is not something which can be achieved overnight and in the case of satellites, there are two relatively large challenges to integration: regulatory and capital. There may be regulatory issues related to spectrum allocation and licensing and there are well documented business challenges related to the cost of deploying and operating satellite networks.

    satellite-background-image-v2

    In the case of satellites, it’s not quite as simple as changing a SIM or updating firmware over the air. Satellites are largely programmed prior to launch. In most cases it would mean launching additional satellites within a constellation to add the technology required to support these interoperability features.

    If for example, satellite operators had incorporated 2G or 3G network technology, both of which are now in the process of sunsetting, those additional features would be becoming redundant. In short, there are benefits to maintaining proprietary technology and this is how many of the longer standing satellite operators have conducted business.

    Currently many of the in-built phone functions depend on 5G NTN technology. However, despite the noise the reality of integration is slow. Qualcomm’s new Snapdragon X75 chipsets, leveraging Iridium’s satellite network are due for sampling in Q2 of 2023 (now), with expected select shipping estimated for Q3 and 4. Other companies, including Apple have demoable tech which incorporates NTN using Qualcomm X65 chipsets but this is limited to one usable band – n53.

    In short, while advances are exciting and once this tech does land it’s expected to be very disruptive, we are still very much in the early stages of development. So the exact role of satellites within 5G architecture and Industry 4.0 more generally is unclear.

    5G on back of mobile

    What is clear however, interoperability is top of mind for many just now. Just this week, 13th March 2023, Iridium’s CEO Matt Desch hosted a session at the SATELLITE 2023 event titled The Satellite-Cellular Convergence – A New Era for the Telco Industry?

    The last few years within the satellite industry has seen incredible growth and innovation but not all new players entering space will be here for the long term. Just as not all technology within the 3GPP standard – NB-IoT (Narrowband Internet of Things), LTE-M (Long-Term Evolution for Machines), 5G NR – will be here for the long term. The challenge now lies with satellite operators and bodies such as 3GPP to create and maintain technology standards which all players can bet on. Ultimately, the only way we will achieve a fully connected world capable of supporting Smart Industry is with both 5G and Satellite technology because without connection, nothing is smart.

    Ready to unlimit your IoT application...

    ... But not sure where to start? We can help. Interoperability can be a real challenge for those with IoT projects. Having partnered with satellite network providers such as Iridium and Inmarsat for well over a decade, we have access to competitively priced tariffs, and almost all of our products allow dual connectivity.

    So if you are working on an IoT project and would like some no pressure, objective advice, simply fill in the form and one of our expert team will get back to you.